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This script contains the definitions and theorems that one needs for solving the problem sets of CTPS. The
level of detail I gave is aimed to match the level we need for the philosophical applications we have in mind.
Hence, it will be simpler compared to most of standard mathematics introductions to probability theory or
Bayesian Networks. Nevertheless, I tried to ground the definitions solidly such that they are special cases of
more complex definitions. If you are interested in reading on the more advanced or more general probability
theory, I tried to point to the concept names you can google for.
All information is subject to change. There will be typos, misscalculations, and maybe even missconceptions
in the script. Therefore, it is better if you ultimately rely on the lecture slides. If you find any mistakes,
please write an email to timo.freiesleben@web.de.
Notice that this script does not give an intro to the philosophical parts of the CTPS-course.

1 Proof by Mathematical Induction

Mathematical induction is one of the standard methods of how to prove statements of the following form:

∀n ∈ N0 with n ≥ k holds A(n) (1)

Where k is some element in N and A is a 1-ary predicate.
There are different ways of how this can be done, which are all equivalent. Two very common versions look
like this:

A(k) ∧ ∀n ≥ k : (A(n)→ A(n+ 1))

or
A(k) ∧ ∀n ≥ k : ((∀k ≤ l ≤ n : A(l))→ A(n+ 1)).

The simple idea standing behind mathematical induction is the following.

1. Assume I can prove some statement for a particular natural number k.

2. Assume moreover I can prove that whenever our statement holds for some natural number n greater
than k then it also holds for n+1.

Then, I can conclude that it holds for all natural numbers n greater than k. Why is that? Easy! I know the
statement is true for k since (1). But, if it holds for k it also has to hold for k+1 due to (2). Now, I know
it holds for k+1, but then it also has to hold for (k+1)+1, and so on and so forth. At some point, we will
reach every natural number greater than k by this procedure.

Example 1.1. Prove that for all n ∈ N0 the following holds
n∑
i=1

i = n(n+1)
2 by mathematical induction.

Proof. Let A(l) :≡
l∑
i=1

i = l(l+1)
2 .

Base Case:

Since the statement should hold for all n ∈ N0 our base case is to show that A(0). A(0)⇔
0∑
i=1

i = 0(0+1)
2 ⇔

0 = 0
Induction Hypotheses:
for a fixed but arbitrary n ∈ N0 holds A(n).
Inductive Step:
n+1∑
i=1

i = (n+ 1) +
n∑
i=1

i
I.H
= (n+ 1) + n(n+1)

2 = 2 (n+1)
2 + n(n+1)

2 = n(n+1)+2(n+1)
2 = (n+1)(n+2)

2
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2 Basic Definitions and Analysis

The following Definitions one will need regularly:

Definition 2.1. Summation

n∑
i=1

ai = a1 + · · ·+ an

where n ∈ N0 and a1, . . . , an ∈ R. For n = 0
n∑
i=1

ai =
0∑
i=1

ai = 0..

Definition 2.2. Products

n∏
i=1

ai = a1 · · · an

where n ∈ N0 and a1, . . . , an ∈ R. For n = 0
n∏
i=1

ai =
0∏
i=1

ai = 1..

Definition 2.3. Factorial

n! =

n∏
i=1

i

where n ∈ N0.

Example 2.4. Simple Examples:

•
5∑
i=1

i2 = 12 + 22 + 32 + 42 + 52

•
5∏
i=1

i = 1 · 2 · 3 · 4 · 5 = 5!

Comment 2.5. Index Trick
Let a1, . . . , an ∈ R with n ∈ N and k ∈ N, then

n∑
i=1

ai =

n+k∑
i=1+k

ai−k

This trick is used quite regularly in many contexts, especially in proofs by induction. Clearly, the same works
with products.

For this course, one only needs a very basic knowledge of analysis. The following I consider relevant. Check
for the proofs of the theorems online if you are interested. I’ll always put the names of the theorems such
that it is easy to find proofs.

Theorem 2.6. (Chain Rule)
Assume u and v are differentiable functions with Image(v) ⊆ Domain(u) with f(x) := u(v(x)) for all
x ∈ Domain(v). If f is differentiable in point x0 ∈ Domain(v) (You usually don’t have to care about
differentiability that much) then:

f ′(x0) = (u ◦ v)′(x0) = u′(v(x0))v′(x0)

Or in short
f ′ = (u ◦ v)′ = (u′ ◦ v) · v′

where f ′, u′, v′ denote the derivative of the respective functions.

Theorem 2.7. (Product Rule)
Assume u and v are functions from the domain D ⊆ R with f(x) := u(x) · v(x) for all x ∈ D. Assume f is
differentiable in point x0 ∈ D then:

f ′(x0) = (uv)′(x0) = u′(x0)v(x0) + u(x0)v′(x0)

Or in short
f ′ = (uv)′ = u′v + uv′

where f ′, u′, v′ denote the derivative of the respective functions.
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Theorem 2.8. (Quotient Rule)

Assume u and v are functions from the domain D ⊆ R with f(x) := u(x)
v(x) for all x ∈ D with v(x) 6= 0.

Assume f is differentiable in point x0 ∈ D then:

f ′(x0) = (uv)′(x0) =
u′(x0)v(x0)− u(x0)v′(x0)

v(x)2

Or in short

f ′ = (uv)′ =
u′v − uv′

v2

where f ′, u′, v′ denote the derivative of the respective functions.

Theorem 2.9. Let f(x) := ln(g(x)) where g is a differentiable function. Then,

f ′(x) =
g′(x)

g(x)
.

Proof. We make use of the chain rule. We define u(z) := ln(z) and v(x) = g(x). Then, u′(z) = 1
z and

v′(x) = g′(x). Thus, by the chain rule we get that f ′(x) = u′(v(x))v′(x) = 1
v(x)v

′(x) = g′(x)
g(x) .

Theorem 2.10. Let f(x) := eg(x) where g is a differentiable function. Then,

f ′(x) = g′(x) · eg(x).

Proof. We make use of the chain rule. We define u(z) := ez and v(x) = g(x). Then, u′(z) = ez and
v′(x) = g′(x). Thus, by the chain rule we get that f ′(x) = u′(v(x))v′(x) = ev(x)v′(x) = g′(x)eg(x)

Example 2.11. Let f(x) := x · log(x). We make use of the product rule. We define u(x) := x and
v(x) := log(x). We obtain that u′(x) = 1 and v′(x) := 1

x . Thus f ′(x) = u′(x)v(x) + u(x)v′(x) = log(x) + 1.

Theorem 2.12. (Laws for Logarithm)
Let a, x, y ∈ R+, β, z ∈ R then:

• loga(x · y) = loga(x) + loga(y)

• loga(xy ) = loga(x)− loga(y)

• β loga(x) = loga(xβ)

• x = az ⇒ z = loga(x)

Usually, we will have that a = e is the Euler constant with e ≈ 2, 7183.

Theorem 2.13. (Laws for Exponential)
Let x, y, z, β ∈ R then:

• xy · xz = xy+z

• xz · yz = (x · y)z

• (xy)β = xβy

• 1
xy = x−y

Definition 2.14. Maxima/Minima
Let f : D → R; x 7→ f(x) be a differentiable function with D ⊆ R. We call x0 ∈ D

• a local minimum of f if1 f ′(x0) = 0 ∧ f ′′(x0) > 0

• a local maximum of f if f ′(x0) = 0 ∧ f ′′(x0) < 0

• a global minimum of f iff ∀x ∈ D : f(x0) ≤ f(x)

• a global maximum of f iff ∀x ∈ D : f(x0) ≥ f(x)

1Note that f ′(x0) = 0 is only a necessary condition and f ′′(x0) > 0 is only a sufficient condition. However, usually nothing
more will be relevant for you. To see that the latter is not necessary consider f(x) = x4 which has a minimum at x = 0 however
f ′′(0) = 0.
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3 Combinatorics

The following are some very basic scenarios in combinatorics.
Assume you have an urn with n distinct elements. There are:

1.
(
n
k

)
:= n

k!(n−k)! ways to draw k elements without replacement without order

2. n!
(n−k)! ways to draw k elements without replacement in order.

3.
(
n+k−1

k

)
ways to draw k elements with replacement without order.2

4. nk ways to draw k elements with replacement in order.

4 Basic Probability Theory

Here we introduce the basics of probability theory. If we work with a space of events Ω we will always assume
that |Ω| <∞. This means that Ω is finite.3

Definition 4.1. Sample space
A sample space is a set of possible outcomes. In philosophical contexts, this is often a set of possible worlds.
This set is usually denoted Ω. We demand that Ω 6= ∅.

Definition 4.2. σ-Algebra
For us the σ-Algebra is just F := P(Ω) = 2Ω in every case. P(Ω) denotes the powerset of Ω, which is the
set of all subsets of Ω meaning P(Ω) := {A | A ⊆ Ω}. The elements of P(Ω) are usually called events.

Definition 4.3. Probability measure
A Probability measure P is a function

P : P(Ω)→ [0,∞], A 7→ P (A)

that satisfies the following two conditions:

• P (Ω) = 1 and

• if A,B ⊆ Ω with A ∩B = ∅ then P (A ∪B) = P (A) + P (B).

Definition 4.4. Probability Space
A probability space is a triple (Ω, P,P(Ω)) where Ω is a sample space, P is a probability measure on Ω, and
P(Ω) the powerset of Ω.

Definition 4.5. Random Variable
A random variable X is a (measureable)4 function X : Ω → R, ω 7→ X(ω). We define for any x ∈ R
[X = x] := X−1(x) ⊆ Ω5 or more generally [X = A] = X−1(A) ⊆ Ω for A ⊆ R. Thus,

P (X = x) = P (X−1(x)).

Theorem 4.6. Let A,B ⊆ Ω. The following are interesting properties of probability measures:

• P (∅) = 0

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• P (A) ≤ 1

• P (A) =
∑
ω∈A

P ({ω})

2Only added for matters of completeness. Google Multiset if you want to know more.
3As always things get much more difficult but also interesting if we drop this assumption. However, this would demand

a lot more work. If you are interested you should first acquire some basics in measurement theory. The σ-Algebra we are
working with will in infinite cases usually not be the powerset of Ω. (Coolest thing in measurement theory related to that: The
Banach-Tarski Paradoxon.)

4Again, in your case any function is measureable. The requirement is X−1(A) ∈ F for all A in the Borel-σ-Algebra of R.
5This is only well defined if X is a measureable function, so you can see how the puzzle fits together.
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• If
n⋃
i=1

Ai = Ω and ∀i, j ∈ {1, . . . , n} with i 6= j holds Ai ∩ Aj = ∅ then for any set B ⊆ Ω holds

P (B) =
n∑
i=1

P (Ai ∩B)

Definition 4.7. Joint Probability Mass Function and the Distribution of X
Let (Ω, P, 2Ω) be a probability space where |Ω| <∞, 2Ω denotes the powerset of Ω, and let X : Ω→ R be a
random variable. The distribution PX of X is defined by

PX(A′) := P ({ω ∈ Ω : X(ω) ∈ A′}) for all A′ ⊆ R

The so-called probability mass function fX : R → [0, 1] of X is used among other things to visualise distri-
butions. It is straight forwardly defined by

fX : x 7→ P (X = x).

For n random variables X1, . . . , Xn and real numbers x1, . . . , xn ∈ R with n ∈ N the joint probability mass
function is defined as:

fX1,...,Xn(x1, . . . , xn) := P (X1 = x1 and · · · and Xn = xn)

Definition 4.8. Identically Distributed
Let X,Y be random variables. We say that X and Y are distributed identical if ∀a ∈ R holds:

fX(a) = fY (a)

Notice that this does not imply that the random variables are identical. They just assign the same proba-
bilities to particular values, that could be to completely different events. Also, on zero measure sets (events
that “almost never” happen) the values could be completely off.

Example 4.9. Some Interesting Distributions
Let (Ω, P,P(Ω)) be a probability space and X be a random variable. The following are some common and
interesting distributions.

• We call P uniformly distributed on Ω (P ∼ Unif(Ω)) iff P (ω) = 1
|Ω| ∀ω ∈ Ω.

• We call PX (often also X) Bernoulli distributed (X ∼ Ber(p)) with p ∈ [0, 1] iff P(X=1)=p=1-P(X=0).

• We call PX (often also X) Binomially distributed (X ∼ Bin(p, n)) with p ∈ [0, 1], n ∈ N iff P (X =
k) =

(
n
k

)
pk(1− p)n−k.

• We call PX (often also X) Geometrically distributed (X ∼ Geo(p)) with p ∈ [0, 1] iff P (X = k) =
p(1− p)k−1.

A standard Bernoulli trial with parameter p would be a coin flip with probability p showing heads. A
Binomially distributed variable with parameters p and n would be the sum of n many independent Bernoulli
trials with parameter p. A geometrically distributed variable with parameter p could be interpreted as
assigning to each k the probability that after k Bernoulli trials it turns out heads for the first time.

Definition 4.10. Expected Value
Let X be a random variable as defined above. Then,

E(X) :=
∑
x∈R

P (X = x) · x.

This is only one way to state the expected value. As one can prove the following is equivalent:

E(X) =
∑
ω∈Ω

P ({ω}) ·X(ω).

Notice that we will regularly use P (ω) instead of P ({ω}), which is only an abbreviation but does not change
the fact that P is only defined for sets of outcomes.6

Intuitively the expected value is something like a weighted average of the outcomes.

6Also, we might use E[X] instead of E(X) from time to time, both notions are very common.
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Theorem 4.11. Linearity of Expected Value
Let X,Y be random variables and a, b ∈ R. Important properties of the Expected Value:

• E(a ·X + b) = a · E(X) + b

• E(X + Y ) = E(X) + E(Y )

Definition 4.12. Variance & Covariance
Let X,Y be random variables. The variance of X is defined as:

var(X) := E((X − E[X])2)

The variance tells you about how far the outcomes of the random variable are spread from the average value.
Moreover, we define the covariance of X,Y as follows:

cov(X,Y ) := E[(X − E[X])(Y − E[Y ])].

Covariance is a lot harder to interpret. I would say it mainly shows the linear relationships between two
random variables. Notice, that if the Covariance is zero we say that the two random variables are uncorre-
lated. This does not mean that they are independent. Independence on the other side implies a covariance
of zero.

Theorem 4.13. Properties of Variance & Covariance

• var(X) = cov(X,X).

• var(X) = E[X2]− E[X]2

• cov(X,Y ) = E[XY ]− E[X]E[Y ]

Definition 4.14. Conditional Probabilities
Let (Ω, P,P(Ω)) be a probability space. For any A,B ⊆ Ω with P (B) > 0 we can define the probability of
A given that B as follows:

P (A | B) :=
P (A ∩B)

P (B)

Definition 4.15. Independence
Let (Ω, P,P(Ω)) be a probability space. Let A,B ⊆ Ω. We call A independent of B if and only if

P (A ∩B) = P (A) · P (B)

We will later see a further generalization of this definition.
One can derive by this that if P (B) > 0 then

A,B are independent iff P (A | B) = P (A). (2)

This has a lot of intuitive appeal! It says that event A is independent of event B if knowing that B happened
does not tell us anything about whether event A happens.

Definition 4.16. Independence of Random Variables
Let (Ω, P,P(Ω)) be a probability space. Let X and Y be two random variables. We call X independent of
Y if and only if

P (X = x, Y = y) = P (X = x) · P (Y = y) ∀x, y ∈ R

Very often we do not specify the sampling space exactly and instead we start with the random variables
and the probability distributions of these random variables. There is a theorem showing that there exists a
sample space on which these random variables are well defined.

Theorem 4.17. Law of Large Numbers
Let (Xi)i∈N be a sequence of independent and identically distributed random variables (i.i.d) with E[X2

1 ] <∞
then for Xn :=

n∑
i=1

Xi

n holds:

lim
n→∞

Xn = E(X1) almost certainly.
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Theorem 4.18. General Product Rule (Also called chain rule of probability)

Let (Ω, P,P(Ω)) be a probability space. For any A1, . . . , An ⊆ Ω with
n−1⋂
i=1

Ai 6= ∅ with n ∈ N holds the

following:

P (

n⋂
i=1

Ai) =

n∏
i=1

P (Ai | A1 ∩ · · · ∩Ai−1).

Theorem 4.19. Bayes Theorem

Let
n⋃
i=1

Hi = H for some set H in Ω s.t. ∀i, j ∈ {1, . . . , n} with i 6= j holds Hi ∩ Hj = ∅. Let moreover

E ⊆ Ω. Then, the following holds:

P (H | E) =
P (H)P (E | H)

n∑
i=1

P (Hi)P (E | Hi)

Definition 4.20. Conditional Expectation
Let (Ω, P,P(Ω)) be a probability space. Moreover, let X,Y be random variables and y ∈ Image(Y ) with
P (Y = y) > 0. Then, we can define the conditional expectation of X given Y = y as follows:

E(X | Y = y) :=
∑
x∈R

P (X = x | Y = y)x

Generally, we can define the function

E(X | Y ) : A→ R; y 7→ E(X | Y = y)

Where A = {y ∈ Image(Y ) | P (Y = y) > 0}. If we define this more carefully7 we can even get a random
variable over all R.
Intuitively the conditional expectation of X on Y = y expresses the expected value of the random variable
X given that the random variable Y happened to be y.

Let’s see all this notions in action in an example:

Example 4.21.
Probability Space
Let Ω := {w1, . . . , w6} × {w1, . . . , w6} be a probability space, where (wi, wj) describes the outcome that
die one landed on i and die two landed on j with i, j ∈ {1, . . . , 6}. Assume P ∼ Unif(Ω) (meaning
P (w) := P ({w}) = 1

36 for all w ∈ Ω) and our σ-algebra is P(Ω). Then our probability space is (Ω, P,P(Ω)).
Measuring an event
Let A := {(w1, w1), (w2, w2), (w4, w2), (w6, w3)}, then

P (A) = P ({(w1, w1), (w2, w2), (w4, w2), (w6, w3)}) = P ((w1, w1))+P ((w2, w2))+P ((w4, w2))+P ((w6, w3)) =
4

36
=

1

9
.

Independence of two sets
Let A := {(w1, w1), (w1, w2), (w1, w3), (w1, w4), (w1, w5), (w1, w6)} and
B := {(w1, w4), (w2, w4), (w3, w4), (w4, w4), (w5, w4), (w6, w4)}. Then, A ∩ B = {(w1, w4)}. We can show
that A and B are independent:

P (A ∩B) = P ((w1, w4)) =
1

36
=

1

6
· 1

6
= P (A)P (B).

Independence of Random Variables
Now, we have a look at random variables. Let,

X1 : Ω→ R, (ωi, ωj) 7→ i for all i, j ∈ {1, . . . , 6}

and
X2 : Ω→ R, (ωi, ωj) 7→ j for all i, j ∈ {1, . . . , 6}.

7In maths this is defined not constructively but by a condition on the function. Consult the wiki article of conditional
expectation to learn more about it.
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Informally, X1 is a random variable describing the outcome of rolling die one and X2 is a r.v. describing the

outcome of rolling die two. The distribution of X is PX1
(i) =

{
1
6 if i ∈ {1, . . . , 6}
0 else

. Notice that X1 and

X2 are identically distributed since fX1
(i) = fX2

(i) for all i ∈ R.
X1 and X2 are also independent. One can actually show that, in order for doing so one has to show
that for all i, j ∈ R holds P (X1 = i,X2 = j) = P (X1 = i)P (X2 = j). We showed already above that
A := [X1 = 1] and B := [X2 = 4] are independent. The same can be done for the other values of i, j ∈ R.
For i ∈ R \ {1, . . . , 6} or j ∈ R \ {1, . . . , 6} for example holds that P (X1 = i) = 0 or P (X2 = j) = 0 and thus
P (X1 = i,X2 = j) = P (∅) = 0 = P (X1 = i)P (X2 = j).
The joint probability mass function is for all i, j ∈ {1, . . . , 6}:

fX1,X2(i, j) = fX1(i)fX2(j) =
1

36

Expectation
The expectation can be calculated as follows:

E(X1) =

6∑
i=1

P (X1 = i) i =
1

6
(6 + 5 + 4 + 3 + 2 + 1) =

7

2

Variance

Var(X1) = E(X2
1 )− E(X1)2 =

6∑
i=1

i2P (X = i)− 7
2 = 1

6 (1 + 4 + 9 + 16 + 25 + 36)− 7
2

2 ≈ 2.92.

Covariance

Cov(X1, X2) = E(X1X2)− E(X1)E(X2)
indep

= E(X1)E(X2)− E(X1)E(X2) = 0
Sum of Random Variables
Now, we define X3 := X1 + X2. Then X3 is not independent from X1 since for instance 0 = P (X3 = 12 |
X1 = 1) 6= P (X3 = 12) = 1

36 .
Conditional Expectation

E(X3 | X1) : {1, . . . , 6} → R, i 7→ E(X3 | X1 = i) = i+ 3.5

Law of Large Numbers
Let (Yi)i∈N be i.i.d. random variables with fYi

(j) = 1
6 for all i ∈ N and j ∈ {1, . . . , 6}. Then, E(Y 2

1 ) < ∞

and Y n :=
n∑
i=1

Yi

n

lim
n→∞

Y n = E(Y1) = 3.5 almost certainly.

5 Propositional Variables

Comment 5.1. Let Ω be a sample space and P be a probability measure. Instead of classical random
variables or events, it is often simpler in philosophical applications to work with propositional variables and
ignore the underlying structure. However, we can interpret a proposition C in a language L also as the set
of possible worlds in which the proposition is true. Formally a proposition is then nothing but a subset of Ω.
We describe a propositional variable as a set H := {H,¬H}, where H is a proposition and ¬H denotes the
negation of H. Obviously, H partitions Ω. If we work with propositional variables we will usually not specify
the sample space in full detail but instead, directly look at the probability of the propositions. However, for
any propositional variable, we can easily construct a corresponding binary random variable. We can define
the corresponding binary random variable to a propositional variable H as follows:

Hbinary : Ω→ {0, 1}; ω 7→

{
1 if ω ∈ H
0 else

Then, Hbinary(ω) = 1 if and only if H is true. One could also see their relation exactly by the pre-image,
via H−1

binary(1) = H and H−1
binary(0) = ¬H.

If we have more than one proposition for example n many with Hi proposition for all i ∈ {1, . . . , n} then we
define P (H1, . . . ,Hn) := P (H1 ∧ · · · ∧Hn)

Comment 5.2. For almost all concepts we defined before we have the corresponding concept in propositional
language. Let A,B be propositions and >,⊥ denote Verum, Falsum respectively.
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• P (>) = 1

• P (⊥) = 0

• P (A ∨B) = P (A) + P (B)− P (A ∧B)

• P (A) ≤ 1

• If `
n∨
i=1

Ai and ∀i, j ∈ {1, . . . , n} with i 6= j holds Ai ∧ Aj ` ⊥ then for any proposition B holds

P (B) =
n∑
i=1

P (Ai ∧B)

However, we can not get the concept of expectation as we have it with random variables since it is defined
over the values in R, but we can often use the corresponding binary random variable instead.
Assume you have A1, . . . ,An different propositional variables. In order to fully specify the joint distribution
P (A1, . . . ,An) we need 2n − 1 different values. We need one value for each of the configurations A1, . . . ,An
can have except for one which we can derive by it being a complement to the union of all the others.

6 Bayesian Networks and d-separation

Definition 6.1. DAG
A directed acyclic graph consists of vertices(also called nodes) V where V is a finite non-empty set and
directed edges(these represent the arrows) E. Let A,B ∈ V be nodes, then, an directed edge e ∈ E is
given by a tuple e := (A,B) ∈ E, where, e denotes that there is an edge from node A to node B. For
the graph being acyclic there must not exist directed edges (A1, B1), . . . , (An, Bn) ∈ E with n ∈ N and
A1, . . . , An, B1, . . . , Bn ∈ V such that ∀i ∈ {1, . . . , n− 1} : Bi = Ai+1 and A1 = Bn.

Definition 6.2. Root Node
Let 〈V,E〉 be a DAG. Then, we call root(〈V,E〉) := {B ∈ V | @A ∈ V : (A,B) ∈ E} the root nodes.
Informally, the root nodes are the nodes without any incoming edges.

Definition 6.3. Parents
Let 〈V,E〉 be a DAG. Then, for any given node A ∈ V we call parents(A) := {B ∈ V | (B,A) ∈ E} the
parents of A. Informally, the parents of A are just the nodes which have an outgoing edge to A.

Definition 6.4. Children
Let 〈V,E〉 be a DAG. Then, we define children(A) := {B ∈ V | (A,B) ∈ E} as the children of A. Informally,
the children of A are all the nodes that have an incoming edge from A.

Definition 6.5. Descendants
Let 〈V,E〉 be a DAG. A descendant of A is defined as
descendants(A) := {B ∈ V | ∃(A1, B1), . . . , (An, Bn) ∈ E : Bi = Ai+1 and A1 = A and Bn = B}
Informally, the descendants of A are all the nodes that can be reached by going along directed edges starting
at A.

Definition 6.6. Chain
Let 〈V,E〉 be a DAG. If e := (A,B) ∈ E then we call e′ := (B,A) the inverse edge of e. A chain between X
and Y with X,Y ∈ V is a sequence of edges e1, . . . , en with ei := (Ai, Bi) such that

• ei 6= ej for i 6= j

• A1 = X and Bn = Y

• Bi = Ai+1 for i ∈ {1, . . . , n− 1}

• for all ei holds ei ∈ E or e′i ∈ E.

A chain is simply a path between two nodes where we are ignoring the direction of the arrows. Condition
one says we don’t go any edge twice, two says we start at the right point and also end at the right node.
Condition three guarantees that the nodes in between are actually connected and condition four says that
the the paths we want to go are really on our DAG.

9



Definition 6.7. d-separation
Let X,Y,Z ⊆ V be sets of nodes in a DAG 〈V,E〉. Z d-separates X from Y, if and only if for every chain p
connecting elements of X and Y there exists a node (variable) C such that

• C ∈ Z and the arrows in p meet head-to-tail at C,

• C ∈ Z and the arrows in p meet tail-to-tail at C,

• C 6∈ Z none of C’s descendants is in Z and the arrows in p at C meet head-to-head.

Definition 6.8. Conditional Independence
Let X := {X1, . . . , Xk}, Y := {Y1, . . . , Yr}, and Z := {Z1, . . . , Zm} be sets of random/propositional variables
with k, r,m ∈ N. Then, we define the conditional independence of X of Y given Z as follows:

X |= Y | Z iff P (X1 = x1, . . . , Xk = xk, Y1 = y1, . . . , Yr = yr | Z1 = z1, . . . , Zm = zm) =

P (X1 = x1, . . . , Xk = xk | Z1 = z1, . . . , Zm = zm) · P (Y1 = y1, . . . , Yr = yr | Z1 = z1, . . . , Zm = zm)

for all x1, . . . , xk, y1, . . . , yr, z1, . . . , zm ∈ R or ∈ {true, false} respectively for propositional variables. More-
over, we have to assume P (Z1 = z1, . . . , Zm = zm) > 0.

Definition 6.9. Parental Markov Condition
Let (Ω, P,P(Ω)) a probability space and 〈V,E〉 be a DAG, where each of the nodes in A ∈ V represents a
random/propositional variable. We say that 〈V,E〉 with (Ω, P,P(Ω)) satisfies the parental markov condition
(PMC) if for any A ∈ V holds that A is conditionally independent of any (possibly combinations) of its
non-descendants given all its parents.

Definition 6.10. Bayesian Network
Formally a Bayesian Network is a tuple 〈G,P〉 where G = 〈V,E〉 is a directed acyclic graph, P = (Ω, P,P(Ω))
is a probability space and V is a set of random/propositional variables that satisfies the parental markov
condition.
Intuitively a Bayesian Network is a DAG with a joint probability distribution on the nodes of the DAG that
satisfies PMC.

Comment 6.11. Important Graphical Structures
The following three structures are the most important in Bayesian Networks and are named as follows:

• X → Y → Z is called a directed chain.

• X → Y ← Z is called a collider.

• X ← Y → Z is called a fork, also called common cause in causal language.

Definition 6.12. Faithful
We call a Bayesian Network 〈〈V,E〉P〉 faithful, iff the PMC+semi graphoid axioms imposed on G entails all
and only the conditional independences of P.

Definition 6.13. Minimality
Let 〈G,P〉 be a Bayesian Network. We say that the DAG G is minimal with P if the following holds: if we
remove any arrows from G, the resultant DAG G′ no longer satisfies the PMC with P.

Definition 6.14. Semi Graphoid Axioms
The following four axioms together are called the semi graphoid axioms.8

1. Symmetry: X |= Y | Z → Y |= X | Z.

2. Decomposition: X |= Y,W | Z → X |= Y | Z.

3. Weak Union: X |= Y,W | Z → X |= Y | Z,W .

4. Contraction: (X |= Y | Z & X |= W | Y, Z) → X |= Y,W | Z.

Theorem 6.15. Power of d-separation
If the given Bayesian Network 〈〈V,E〉,P〉 is faithful, for X,Y, Z ⊆ V it holds that X |= Y | Z, if and only if
Z d-separates X from Y . (Without the faithfulness assumption, only the ⇐ direction holds.)

8I put commas between the (sets of) random variables since I find it easier to read. However, it means the same as Jürgen’s
definitions.
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Theorem 6.16. Product Rule for Bayes Nets
Let (Ω, P,P(Ω)) be a probability space and 〈V,E〉.
Define an ancestral ordering on variables, all parents have a smaller number than all of their children. (Count
top-down, with roots at the top and leaves at the bottom.)

For any A1, . . . , An ⊆ Ω with
n−1⋂
i=1

Ai 6= ∅ with n ∈ N holds the following:

P (

n⋂
i=1

Ai) =

n∏
i=1

P (Ai |
n⋂

g=i+1

Xg = xg where Xg is a parent of Xi)).

7 Entropy

The entropy is a measure of average information or surprise.

Definition 7.1. Information of an outcome
Let (Ω, P,P(Ω)) be a probability space. Then, for every ω ∈ Ω we can define

I(ω) := − log2(P (ω)).

Using this particular function is motivated by several properties of the negative log. It only assigns non-
negative values in [0; 1]. Independent information about two events is the same as the sum of the two pieces
of information. The basis 2 of the logarithm is chosen for the outcome of a fair coin toss having exactly the
information 1. Often also the natural logarithm to the basis e is used. The unit of information is Shannon9

or sometimes also bit in computer science. We use the convention that 0 log(0) = 0 which is a continuous
extension of x log(x) in zero.

Definition 7.2. Entropy of a probability distribution
Let (Ω, P,P(Ω)) be a probability space. Then, the entropy of P is defined as:

H(P ) := −
∑
ω∈Ω

P (ω) log2(P (ω)) =
∑
ω∈Ω

P (ω)I(ω)

The entropy is informally nothing but the expected amount of information.
Much more often then the entropy of our measure we are interested in the entropy of a random variable.
How much information will this random variable give me on average? Thus, let X be a random variable
taking values {x1, . . . , xn} ∈ R.10 Then, the entropy of X is nothing but the entropy of PX . Therefore,

H(X) := H(PX) = −
∑

x∈{x1,...,xn}

P (x) log2(P (x))

Theorem 7.3. Properties of the Entropy
Let Ω be a sample space and P be the set of well-defined probability measures on Ω. The following are
interesting properties of the Entropy H.

• argsup
P∈P

H(P ) = P ′ with P ′ ∼ Unif(Ω).

• For all P ∈ P holds that if P (ω) = 1 for some ω ∈ Ω then H(P ) = 0.

Example 7.4. Let Ω := {w1, w2, w3, w4, w5, w6} be some sample space and P ∼ Unif(Ω). Then, the
entropy of P is:

H(P ) = −
6∑
i=1

P (wi) log2(P (wi)) = −
6∑
i=1

1

6
log2(

1

6
) = log2(6) ≈ 2.585

Let X(wi) :=


0 if i = 1, 2, 3

1 if i = 4, 5

2 if i = 6

then, the Entropy of X is given by:

E(X) = −
2∑
i=0

PX(i) log(PX(i)) = −(
1

2
log2(

1

2
) +

1

3
log2(

1

3
) +

1

6
log2(

1

6
)) =≈ 1.459

I am not an expert on entropy nor familiar with maxEnt, thus I leave this open for now. If you have things
to add feel welcome to send me an email.

9In honor of the founder of information theory Claude E. Shannon.
10This also works for {true, false}.
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